
JOURNAL OF THE
CHUNGCHEONG MATHEMATICAL SOCIETY
Volume 38, No. 1, February 2025
http://dx.doi.org/10.14403/jcms.2025.38.1.53

CONTINUITY OF INTERTWINING LINEAR

OPERATORS WITH SHIFT OPERATORS ON Lp(R)

Hyuk Han

Abstract. In this paper, we show that for an isometry T acting on
a Banach space X, the analytic spectral subspace XT (F ) coincides
with the algebraic spectral subspace ET (F ) for any closed subset
F of C. Using this, we have the following result. For p, q ∈ [1,∞)
and a linear operator θ : Lp(R) → Lq(R), if Taθ = θTa for some
a ∈ R \ {0}, then θ is automatically continuous, where Ta is the
shift operator.

1. Spectral subspaces of linear operators

Throughout this paper we shall use the standard notions and some
basic results on the theory of local spectral theory and automatic con-
tinuity theory. Let X be a Banach space over the complex plane C and
let L(X) denote the Banach algebra of all bounded linear operators on
a Banach space X. Given an operator T ∈ L(X), Lat(T ) denotes the
collection of all closed T -invariant linear subspaces of X, and for an
Y ∈ Lat(T ), T |Y denotes the restriction of T on Y .

For a given T ∈ L(X), let σ(T ) and ρ(T ) denote the spectrum and
the resolvent set of T , respectively. The local resolvent set ρT (x) of T
at the point x ∈ X is defined as the union of all open subsets U of
C for which there is an analytic function f : U → X which satisfies
(T − λ)f(λ) = x for all λ ∈ U . The local spectrum σT (x) of T at x is
then defined as

σT (x) = C \ ρT (x).
Clearly, the local resolvent set ρT (x) is open, and the local spectrum
σT (x) is closed. For each x ∈ X, the function f(λ) : ρ(T ) → X defined
by f(λ) = (T−λ)−1x is analytic on ρ(T ) and satisfies (T−λ)f(λ) = x for
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all λ ∈ ρ(T ). Hence the resolvent set ρ(T ) is always a subset of ρT (x)
and hence σT (x) is always a subset of σ(T ). The analytic solutions
occurring in the definition of the local resolvent set may be thought of
as local extensions of the function (T − λ)−1x : ρ(T ) → X. There is no
uniqueness implied. Thus we need the following definition. An operator
T ∈ L(X) is said to have the single-valued extension property if for every
open set U ⊆ C, the only analytic solution f : U → X of the equation
(T − λ)f(λ) = 0 for all λ ∈ U is the zero function on U . Hence if T has
the single-valued extension property, then for each x ∈ X there is the
maximal analytic extension of (T − λ)−1x on ρT (x).

For a closed subset F of C, XT (F ) = {x ∈ X : σT (x) ⊆ F} is said
to be an analytic spectral subspace of T . It is easy to see that XT (F )
is a hyperinvariant subspace of X, while generally not closed. Analytic
spectral subspaces have been fundamental in the recent progress of lo-
cal spectral theory, for instance in connection with functional models
and invariant subspaces and also in the theory of spectral inclusions for
operators on Banach spaces.

In the next proposition, we collect a number of results on analytic
spectral subspaces. These results are found in [8].

Proposition 1.1. Let T be a bounded linear operator on a Banach
space X and let F ⊆ C. Then the following assertions hold:
(1) XT (F ) = XT (F ∩ σ(T )).
(2) For all λ /∈ F , (T − λ)XT (F ) = XT (F ). F ⊆ C.
(3) If {Fα} is a family of subsets of C, then XT (∩Fα) = ∩XT (Fα).
(4) T has the single-valued extension property if and only ifXT (∅) = {0}.

Definition 1.2. Let T : X → X be a linear operator on a Banach
space X. Let F be a subset of the complex plane C. Let ET (F ) be the
algebraic linear span of all subspaces Y of X satisfying (T − λ)Y = Y
for all λ /∈ F , Equivalently, we may define ET (F ) as a maximal space
among all linear subspaces Y of X for which (T − λ)Y = Y for which
λ /∈ F . The space ET (F ) is called an algebraic spectral subspace of T .

For arbitrary operator T ∈ L(X), we have

ET (A) ⊆
⋂

λ/∈A,n∈N

(T − λ)nX.

In the next proposition, we collect a number of results on algebraic
spectral subspaces. These results can be found in [8].
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Proposition 1.3. Let T be a linear operator on a Banach space X
and let F ⊆ C. Then the following assertions hold:
(1) ET (F ) is a hyperinvariant subspace, that is, for any bounded linear
operator S : X → X for which ST = TS we have SET (F ) ⊆ ET (F ).
(2) ET (F ) = ET (F ∩ σ(T )).
(3) ET (

⋂
Fα) =

⋂
ET (Fα) for any family of subsets {Fα : α ∈ A} of C.

In particular, if F1 ⊆ F2, then ET (F1) ⊆ ET (F2).

A linear subspace Z of X is called a T -divisible subspace if

(T − λ)Z = Z for all λ ∈ C.
Hence ET (∅) is precisely the largest T -divisible subspace. There exists
a compact and quasi-nilpotent operator T on a Banach space X such
that T has a non-trivial divisible subspace.

Example 1.4. Let X = C[0, 1] be the complex valued continuous
functions on unit interval [0, 1] with pointwise addition, pointwise mul-
tiplications and supremum norm. Let T ∈ L(X) denote the Volterra
operator defined by

(Tf)(s) =

∫ s

0
f(t)dt for all f ∈ C[0, 1] and s ∈ [0, 1].

Then T is both compact and quasi-nilpotent. But T has the following
non-trivial divisible subspace

Y = {f ∈ C∞[0, 1] : f (k)(0) = 0 for all k = 0, 1, . . . }.

On the other hand, many important operators do not have non-trivial
divisible subspaces. For example, hyponormal operators on Hilbert
spaces do not have non-trivial divisible subspaces.

2. Basic tools of automatic continuity

Let θ be a linear operator from a Banach space X into a Banach
space Y . The space

S(θ) = {y ∈ Y : there is a sequence xn → 0 in X and θxn → y}
is called the separating space of θ. It is easy to see that S(θ) is a closed
linear subspace of Y . By the closed graph theorem, θ is continuous if
and only if S(θ) = {0}. The following lemma can be found in [9].
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Lemma 2.1. Let X and Y be Banach spaces. If R is a continuous
linear operator from Y to a Banach space Z, and if θ : X → Y is a linear
operator, then (RS(θ))− = S(Rθ). In particular, Rθ is continuous if
and only if RS(θ) = {0}.

The next lemma is called Stability Lemma. This lemma states that
a certain descending sequence of separating space which obtained from
θ via a countable family of continuous linear operators is eventually
constant. It is proved in [11].

Lemma 2.2. Let θ : X0 → Y be a linear operator between the Banach
spaces X0 and Y with separating space S(θ), and let ⟨Xi : i = 1, 2, . . .⟩
be a sequence of Banach spaces. If each Ti : Xi → Xi−1 is a continuous
linear operator for i = 1, 2, . . . , then there is an n0 ∈ N for which
S(θT1T2 . . . Tn) = S(θT1T2 . . . Tn0) for all n ≥ n0.

An operator T ∈ L(X) is called decomposable if, for every open cover-
ing {U, V } of the complex plane C, there exist Y,Z ∈ Lat(T ) such that
σ(T |Y ) ⊆ U , σ(T |Z) ⊆ V and Y + Z = X. There are many decom-
posable operators, for example, normal operators, spectral operators in
the sense of Dunford, operators with totally disconnected spectrums and
hence compact operators are decomposable.

Given a topological space Ω and a topological vector space X, we
denote by F(Ω) the collection of all closed subsets of Ω, and by S(X)
the collection of all closed linear subspaces of X. A mapping E(·) :
F(Ω) → S(X) is said to be a precapacity if E(∅) = {0} and E(F ) ⊆ E(G)
for all closed sets F, G ⊆ Ω with F ⊆ G. Given a precapacity E(·) :
F(Ω) → S(X), we say that E(·) is decomposable if

X = E(U) + E(V ) for every open cover {U, V } of Ω,

and that E(·) is stable if arbitrary intersections are preserved, that is,

E(
⋂

Fα) =
⋂

E(Fα)

for every family of closed subsets {Fα : α ∈ A} of Ω. A stable map is
called a spectral capacity if E(·) satisfies the following condition:

X =
∑
α

E(Gα) for every finite open cover {Gα : α ∈ A} of C.

If Ω is second countable, then it follows easily from Lindelöf’s covering
theorem that a precapacity on F(Ω) is stable whenever intersections of
countable families of closed sets are preserved. We say that E(·) is order
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preserving if it preserves the inclusion order. Clearly a stable map is
order preserving. It is well known that T is decomposable if and only
if there exists a spectral capacity E(·) such that E(F ) ∈ Lat(T ) and
σ(T |E(F )) ⊆ F for each closed set F ⊆ C. In this case the spectral
capacity of a closed subset F of C is uniquely determined and it is the
analytic spectral subspace XT (F ).

The following lemma, known as localization of the singularities, has
appeared in various forms. We adopt [6].

Lemma 2.3. Let X and Y be Banach spaces. Suppose that EX :
F(C) → S(X) is an order preserving map such thatX = EX(U)+EX(V )
whenever {U, V } is an open cover of C, and EY : F(C) → S(Y ) is a stable
map. If θ : X → Y is a linear operator for which S(θ|EX(F )) ⊆ EY (F )
for every F ∈ F(C), then there is a finite set Λ ⊆ C for which S(θ) ⊆
EY (Λ).

The following theorem is a variation of the Mittag-Leffler Theorem
of Bourbaki. The theorem can be found in [11].

Theorem 2.4. Let ⟨Xn : n = 0, 1, 2, . . .⟩ be a sequence of complete
metric spaces, and for n = 1, 2, . . . , let fn : Xn → Xn−1 be a continuous
map with fn(Xn) dense in Xn−1. Let gn = f1 ◦ · · · ◦ fn. Then

∞⋂
n=1

gn(Xn)

is dense in X0.

3. Intertwining linear operators with shift operators

We denote by C∞(C) the Fréchet algebra of all infinitely differentiable
complex valued functions φ(z), z = x1 + ix2, x1, x2 ∈ R, defined on the
complex plane C with the topology of uniform convergence of every
derivative on each compact subset of C. That is, with the topology
generated by a family of pseudo-norm

|φ|K,m = max
|p|≤m

sup
z∈K

|Dpφ(z)|,
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where K is an arbitrary compact subset of C, m a non-negative integer,
p = (p1, p2), p1, p2 ∈ N, |p| = p1 + p2 and

Dpφ =
∂|p|φ

∂x1p1∂x2p2
, z = x1 + ix2.

An operator T ∈ L(X) is called a generalized scalar operator if there ex-
ists a continuous algebra homomorphism Φ : C∞(C) → L(X) satisfying
Φ(1) = I, the identity operator on X, and Φ(z) = T where z denotes
the identity function on C. Such a continuous function Φ is in fact an
operator valued distribution and it is called a spectral distribution for T .
The class of generalized scalar operators was introduced by Colojoarǎ
and Foiaş [2]. Every linear operator on a finite dimensional space as well
as every spectral operator of finite type is generalized scalar operator. It
is well known that if T is an invertible isometry, then T is a generalized
scalar operator. For a generalized scalar operator it is well known that
XT (F ) = ET (F ) for all closed sets F ⊆ C. Hence if T is an invertible
isometry, then XT (F ) = ET (F ) for all closed sets F ⊆ C. Moreover, the
identity XT (F ) = ET (F ) holds on a non-invertible isometry.

The following proposition is in [8].

Proposition 3.1. Let T be a bounded linear operator on a Banach
space X. Suppose that ET (F ) is closed for all closed sets F ⊆ C. Then
the identity XT (F ) = ET (F ) holds for all closed sets F ⊆ C

A linear operator T on a Banach spcce X is said to be bounded below
if there exist a constant M > 0 such that

∥Tx∥ ≥ M∥x∥
for all x ∈ X. If T is a bounded below operator on a Banach space X
then TX is closed.

Proposition 3.2. Let T be an isomrty on a Banach space X. Then
for any closed set F of C,

XT (F ) = ET (F ).

Proof. If T is an invertible isometry, then T is a generalized scalar
operator. Hence The identity XT (F ) = ET (F ) holds for any closed set
F of C. Thus we may assume that T is a noninvertible isometry. By
Proposition 3.1, it is enough to show that ET (F ) is closed for any closed
set F of C. Let F ⊆ C be a given closed set. Suppose that there is a
λ /∈ F with |λ| < 1. If ET (F ) = {0}, then the space ET (F ) is closed.
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Hence we may assume that ET (F ) is non trivial. Let W = ET (F ). Since
T is an isometry, T − λ is bounded below, Hence (T − λ)(W ) is closed.
Therefore, we have

(T − λ)(W ) = W.

Hence (T −λ)|W is invertible. And hence λ /∈ σ(T |W ). It is well known
that the spectrum of a non invertible isometry is the entire unit disk.
Since |λ| < 1, T |W can not to be a noninvertible isometry. Hence T |W
is an invertible isometry. Thus ET |W (F ) is closed in W . Since W is
closed, ET |W (F ) is closed in X. It is clear that

ET |W (F ) = ET (F ) ∩W

= ET (F ).

Therefore, ET (F ) is closed in X. If there is no λ /∈ F with |λ| < 1, then
{λ ∈ C : |λ| < 1} ⊆ F . Since T is a noninvertible isometry,

σ(T ) = {λ ∈ C : |λ| ≤ 1} ⊆ F.

Therefore we have,

ET (F ) = X.

Hence ET (F ) is closed in X. In any case ET (F ) is closed for all closed
F ⊆ C.

Hence for an isometry T , the above proposition allows us to combine
the analytic tools associated with the space XT (F ) and the algebraic
tools associated with the space ET (F ).

Let T and S be bounded linear operators on Banach spaces X and Y ,
respectively. A linear operator θ : X → Y is said to be an intertwining
linear operator with T and S if Sθ = θT .

Proposition 3.3. Suppose that T has the single-valued extension
property on a Banach space X and that S is an isometry on a Banach
space Y . Then every linear operator θ : X → Y with the property
Sθ = θT necessarily satisfies the following:

θXT (F ) ⊆ YS(F )

for all closed subsets F of C.

Proof. Let F be a given closed subset of C. Since XT (F ) ⊆ ET (F ),
θXT (F ) ⊆ θET (F ). For every λ /∈ F , we have

θET (F ) = θ(T − λ)ET (F ) = (S − λ)θET (F ).
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This shows that

θET (F ) ⊆ ES(F ).

By Proposition 3.2, ES(F ) = YS(F ), hence we have

θXT (F ) ⊆ YS(F ).

This completes the proof.

Theorem 3.4. Suppose that T is a decomposable operator on a Ba-
nach space X and that S is an isometry on a Banach space Y . Then
every linear operator θ : X → Y for which θT = Sθ is necessarily
continuous.

Proof. Let θ : X → Y be a linear operator satisfying Sθ = θT . To
prove the continuity of θ, it suffices to construct a non-trivial polyno-
mial p such that p(S)S(θ) = {0}. Indeed if we do so, since S has no
eigenvalues, by Proposition 2.1, all factors S − λ of p(S) is injective,
hence we have

S(θ) = {0}.
From Proposition 3.3, we infer that θXT (F ) ⊆ YS(F ) for all closed
subsets F of C. SinceXT (F ) is the spectral capacity and YS(F ) is stable,
by Lemma 2.3, there is a finite set Λ of C such that S(θ) ⊆ YS(Λ). An
application of the Stability Lemma to the sequence T − λ for λ ∈ Λ
yields a polynomial p for which

S(θp(T )) = S(θp(T )(T − λ)) for every λ ∈ Λ.

Since θ intertwines T and S, this means that by Lemma 2.1

((S − λ)p(S)S(θ))− = (p(S)S(θ))− for every λ ∈ Λ.

If we apply Mittag-Leffler Theorem to the above identity, then there
exists a dense subspace W ⊆ (p(S)S(θ))− for which (S − λ)W = W
for every λ ∈ Λ. This means that W ⊆ ES(C \ Λ) by the definition of
algebraic spectral subspaces. Since W ⊆ S(θ) ⊆ ES(Λ), we obtain that

W ⊆ ES(Λ) ∩ ES(C \ Λ)
= ES(∅)
= YS(∅)
= {0}.

Therefore, we have W = {0}. Consequently, p(S)S(θ) = {0}. Hence θ
is continuous.
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Given a ∈ R \ {0} and a function f : R → C , the shift operator Ta

on Lp(R) is defined as usual by (Taf)(t) = f(t− a). Then, clearly Ta

is an isometry.

Corollary 3.5. Let p, q ∈ [1,∞) and consider a linear operator
θ : Lp(R) → Lq(R) such that Taθ = θTa for some a ∈ R \ {0}. Then θ
is automatically continuous.

Proof. It is well known that the shift operator Ta has no eigenvalues.
Define a map Φ : C∞(C) → L(Lp(C)) by

Φ(f) =

∞∑
n=−∞

f̂(n)Ta
n for all f ∈ C∞(C),

where f̂(n) denotes the n-th Fourier coefficient of the restriction of f
to the unit circle T = {z ∈ C : |z| = 1}. Since ∥Ta

k∥ = 1 for all

k ∈ Z and f̂(n) = o(n−k) as |n| → ∞ for any k ∈ N, Φ is well-defined
and Φ is a continuous algebra homomorphism for which Φ(1) = I and
Φ(z) = Ta. Hence Ta is a generalized scalar operator. In particular,
Ta is a decomposable operator. Thus Ta has the single-valued extension
property, so by Proposition 3.2 we have,

ET (∅) = XT (∅)
= {0}.

Hence Ta has no non-trivial divisible subspaces. Since Ta is an isometry,
the continuity of θ follows from Theorem 3.4.
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